
FACTOR 3

MENSIONALITY
IONS PROJECT

FACTOR 2

REPORT

-+ f 1-

DEPARTMENT/OF^PO(JTICAL SCIENCE.
/.IRN ^\

UNIVERSITY OF HAWAII

•MEX

V
CHL

IRQ*

.GUA AFG.

ECU«

(•praduMd by
NATIONAL TECHNICAL

INFORMATION SERVICE
SptlngntM, Va. 22151

DQ

FACTOR I

©Sbü Lb
c

The Dimensionality of Nations Project
Department of Political Science

University of Hawaii

RESEARCH REPORT NO. S3

DYNA! DYNAMIC STORAGE ALLOCATION

IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM

Alan C. H. Kam
and

Charles F. Wall

April 1971

yD D C

Prepared In connection with research supported by the Advanced Research
Projects Agency, ARPA Order No. 1063, and monitored by the Office of
Naval Research, Contract No. N00014-67-A-0387-0003.

This document has been approved for public release and sale; Its
distribution is unlimited and reproduction in whole or in part is
permitted for any purpose of the United States Government.

BLANK PAGE

UNCLASSIFIED

S^i'urily CluKsifuMlmn

DOCUMENT CONTROL DATA R&D
>Svi'tir$ly t l*h*tlicmttvn ot Itttt, hiHiy ■»/ nhmtrurt mad indeftnt^ 4§nnotn*t'>n rmtnt he entcrvd W-ZHO Itw ttvt rail 'Vfutet Is rlnhhUimU)

I O^ICIK «TINO ACTIVITY (VofpOW »uthot)

DIMENSIONALITY OF NATIONS PROJECT

t0.Ht.fOm »ECuxirv CLASSinr.a HON

UNCLASSIFIED
lb. cnou»

1 nCPOWT TITLK

DYNA: DYNAMIC STORAGE ALLOCATION IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM.

* OEtcniPTivK MOIU.* (Typ» ol npnti »nd Inclutlv dml»»)

Research Report No. 53
» AuTHOmt») (rinl nmm; mlddl» Initial, l»»l nama)

KAM. Alan C. H. and Charles F. Wall

6 MCPORT OATC

April 1971

7«. TOTAL NO Or PA«Et

15
7fc. NO or *ir»

5
ta. CONTKACT OP» SMANT NO

N00014-67-A-0387-0003
b. PMOJCC T NO.

««. OniCINATO«'* KCPOnT MUMetKftl

Research Report No. 53

tb. CTMCR KEPonT NOISI (Any olh»t numb»n Mar
(Mi rtporl)

may b» mail0»9d

10 OlSTRISUTIOM tTATCMCNT
This document has been approved for public release and sale; its distribution is
unlimited and reproduction in whole or in part iß permitted for any ourpose of the
United States Government.

II «U'PLKMKNTARV NOTES

2500 Campus Road
Honolulu, Hawaii 96822

It AStTNACT

12. SPONSOniNO MILITANT ACTIVITY

Advanced Research Projects Agency
Washington, D.C.

This report describes an I.B.M,/360 Assembly Language routine to
allow for dynamic allocation of core storage in Fortran programs. The
report describes in detail the implementation and use of the dynamic
allocation subroutine DYNA.

A fairly detailed knowledge of FORTRAN is assumed In the report.
The dynamic routine may be implemenccvi hv the FORTRAN programmsr
without a detailed understanding AP9i*nibly Language routine "iYNA. A
complete description of DYNA is included,for those prograamara who
The discussion is technical and assumes a knowledge of
I.B.M./360 Operating System Macros and Assembly Language.

li f

DD i NOV •« I "r / O
i/N 010K007.680 1

(PAGE I) UNCLASSIFIED
S«curitv Clnx^ifirafifin

UNCLASSIFIED
Bcüftjf cu»«inc>t[öir

LINK *

nokE «rr

LIMK ■ LINK C

NOLB wr NOLK «T

DYNAMIC STORAGE ALLOCATION

DD ,'ST.A473 <«"»)
(PAGE 2)

UNCLASSIFIED

l<€MHy CtaMtflcMtM

The Dimensionality of Nations Project
Department of Political Science

University of Hawaii

DYNA: DYNAMIC STORAGE ALLOCATION

IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM

ABSTRACT

This report describes an I.B.M./360 Assembly Language routine to

allow for dynamic allocation of core storage In Fortran programs. The

report describes In detail the Implementation and use of the dynamic

allocation subroutine DYNA.

A fairly detailed knowledge of FORTRAN Is assumed in the report.

The dynamic routine may be Implemented by the FORTRAN programmer

without a detailed understanding of the Assembly Language routine

DYNA. A complete description of DYNA is Included. The discussion

is technical and assumes a knowledge of I.B.M./360 Operating System

'lacros and Assembly Language.

DYNA: DYNAMIC STORAGE ALLOCATION

IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM

Alan C. H. Kam
and

Charles F. Wall

University of Hawaii

1. INTRODUCTION

A major limitation of Fortran Is that storage for data Is

allocated at complle-tlme by the programmer. Essentially, some

oplmum dimensions are selected, the program Is compiled and fixed

amount of storage Is made available. If a particular problem requires

less space than is allocated, storage Is wasted» If more space Is

required than has been alloc'.ted, the program must be rcdlmensloned

and recompiled. In today's multlprogrammed systems, either situation

Is an Inefficient use of system resources.

A solution to the problem Is to allocate storage for data at

execution time, dynamically. The general rationale Is that allocation

of storage for data Is a dynamic function that varies with each use of

a particular program.

2. DYNA: Dynamic Storage Allocation In Fortran for the IBM/360

DYNA Is an assembly language subroutine that provides an Inter-

face between a Fortran program or subroutine and the operating system's

(O.S.) main storage manager. Each time DYNA Is called, storage Is

allocated and made available to the Fortran subroutine.

2.

The next four sections discuss ^he O.S. Getmaln/Freenaln facil-

ity, the Interface for these functions, and the Error Conditions en-

countered.

2.1 Fortran Convention

The standard Fortran call is used to cell DYNA and to allocate

storage. The order of the parameters is as follows:

CALL DYNA (SUB, ARBAY1, NSIZE1, ARRATN, NSIZEN)

«here

SUB is the name of the Fortran subroutine the storage is

allocated to

ARRATN la the Nth errey to be allocated

NSIZEN is the avount of storage in words of ARRAYN.

DYNA Is called by the calling Fortran routine which in turn calls

the Fortran subroutine SUB. SUB must be declared EXTERNAL in the calling

routine and the parameters must not appear In COMMON.

The parameter list is e list of the sddresses of .epeh-peremeter

in the subroutine cell. The first parameter is the eddress of the sub-

routine to be called by DYNA. The lest parameter has its high order

byte equal to 128. The call to DYNA consists of loading the eddress

of the parameter list in genaral register 1, loading the address of

DYNA in register 15 and then branching to register IS end linking

register 14. Register 13 points to a save area within the calling

routine (standard O.S. linkage convention).

See References.

2.2 O.S, Getnmln/Freemaln

Getmaln is «n SVC which requests the control program to assign

ownership of an area of main storage to a routine. This SVC has many

options and Is conveniently coded as a macro in assembly language.

However, It has been hand coded in DYNA using the R and VU forms. The

R-form requests a specific amount of main storage in register 0. The

SVC returns the address of this area in general register 1. The VU-

form requests an amount of main storage between two ranges. If the

request cannot be satisfied, the control program will terminate the

calling routine (see Error Conditions). For this form, register 1

points to a parameter list with the appropriate flag specifying the

VU-request.

The Freemain SVC frees the storage assigned by the Getmaln.

Both the R and V forms are used and are hand coded.

2.3 The Interface

Upon entry to DYNA, the general registers are saved in an area

provided by the calling routine. Then the Getmaln SVC issued to obtain

a work area is appropriately initialized.

The next phase Is to process the parameter list and save the

address of the calling routine. The parameter requests are rounded up

in preparation for the double-word alignment. Once the total size of the

arrays his been calculated, the second Getmaln is issued. The main

storage block allocated is used by DYNA to reallocate array addresses.

The original array addresses are replaced with the new double-word

aligned addresses. Thus, the initial parameters corresponding to the

4.

addrtsses passed to DYNA of the arrays are replaced by the addresses

of the main storage area to be used.

DYNA then calls the subroutine whose address is given by the first

parameter In the list passed to DYNA. On return from the called sub-

routine DYNA frees the main storage allocated for the arrays and re-

establishes the linkage to the calling program. DYNA then frees the

work area allocated and returns to the calling routine.

Since DYNA obtains a work area (activation list) upon entry and

frees this work at exit, DYNA is a re-entrant routine and may be called

2
by more than one program in any order.

2.4 Error Conditions

If there is no main storage available the system will abnormally

end (ABEND) with a code of S80A or S804. Other codes are possible but

have yet to be encountered.

If there is some storage available but not enough to satisfy

the request, DYNA calls jSERRl, an error routine written in Fortran

which has as an argument a vector with the following values: the

address of the core that was allocated, the amount the system could

allocate, the minimum requested size (usually zero) and the maximum size

requested.

£EIiR2 is called if the parameter list has the Improper number

of arguments. There should always be an odd number of arguments since

the first argument is the name of the Fortran subroutine called by

DYNA and all other arguments are the paired names and sizes. This

2
See keferences.

5.

error exit occurs in the debugging stage and does not return control.

A message is printed and control is returned tc the system.

3. PROGRAMMING DYNAMIC ROUTINES

The use of DYNA is relatively straightforward. The subroutine

(DYNA) is reentrant and may be nested to any level. The tradeoff is in

the time required to call DYNA in comparison to its efficient use of

space.

3.1 Some Rules

As mentioned in 2.1 standard Fortran is used to call DYNA.

The name of the subroutine to which DYNA will pass control must be

declared EXTEBMAL in the routine calling DYNA. The narameters in the

call statement must not appear in COMMON. If an array is to be DOUBLE

PRECISION, the size parameter must reflect this (e.g. ten words DOUBLE

PRECISION must be passed as twenty words). DYNA always allocates on double-

word boundaries. If a particular array is doubly subscripted the

following form is not allowed in the called subroutine:

DIMENSION X(l,l)

Instead, the appropriate dimensions should be passed in COMMON and used

in the called program in the following manner:

DIMENSION X(N,M)

COMMON N,M

For vectors, either form is acceptable.

6.

3.2 An Added Advantage

If your program follows the nornal Fortran convention of storing

arrays columnwise, the arrays may be dcubly-subscrlpted and calls

to subroutines, as In the Scientific Subroutine Package, may be

called without conversion. Since we always allocate the exact amount

of storage needed by each array, the array may also be treated (In

separate routines) as a vector. Since It Is useful to use doubly-

subscripted arrays for Input/output and certain computations and

singly-subscripted arrays (vectors) for other computations It is

useful to be able to eliminate conversion problems. (For a more

complete discussion see IBM/Scientific Subroutine Package-Programmers

Guide).

3.3 A Sample Program

Consider a program which calculate means, standard deviations and

correlations. A simple call to the IBM/SC? subroutine C0RRE will suffice.

All 1/0 will not be shown as the purpose is to demonstrate the use of

DYNA. We shall consider that we are calling the DOUBLE PRECISION version

of CORRE.

C — THIS IS THE MAIN ROUTINE —

C0MMON N, M

EXTERNAL SUBC

C — READ C0NTR0L CARD AND ALLOCATE C0RE

READ (5, 10) NR0UX, NC0LX

10 FORMAT (213)

N - NSOWX

M - NCOLX

7.

Nl - NROWX * 2

N2 - NC0LX * 2

H3 - Nl * N2

N4 - (N2 * (N2 + l))/2

C — CALL SUBC VIA DYNA

CALL DyNA(SUBC,X,N3,XBAR,N2,STD,N2,RX,N3>R,ll4,B,N2,D,N2,T,N2)

ST0P

END

C — THIS IS SUBROUTINE SUBC

SUBROUTINE SuBC(X,NA,XBAR,NBtSTD,NC,RX,ND,R,NE,B,NF,0,NG,T,NH)

C ~ NOTICE THA.r IN THE SUBROUTINE WE

C — CANNOT HAVE DUPLICATE DUMMY NAMES

DIMENSI0N X(N,M),XBAR(1),STD(1),RX(1).R(l),B(1),D(1),1(1)

C0MM0N N,M

C ~ READ IN DATA

D0 20 I - 1, N

20 READ (5,10) (X(I,J). J - 1, M)

10 FORMAT (10F8.0)

C — CALL CORRE

CALL CORRE (N,H,I,X,XBAR,STD,RXsR,BfD,T)

C ~ PRINT RESULTS

RETURN

END

8.

3.4 Uaer Docunentatlon

Primarily, the user must know:

a) The formula to calculate the dynamic area; and

b) the amount of static storage used by the program and

buffers.

A simple test run with size - 1 for all dynamic data arrays will give

the base (e.g. amount of static storage). To be safe this should

be rounded up to the next even K bytes. The formula is determined by

the particular program. For example, the formula for our sample

program would be given as follows:

SIZE (In bytes) • (2 * N3 + 5 * N2 + N4) * 4

where

Nl ■ Number of rows In X times 2

N2 ■ Number of columns In X times 2

N3 - Nl * N2

N4 - (N2 * (N2 + l))/2

the region Is • SASE + SIZE rounded up to next even K bytes.

This is the estimate the user should supply on the EXEC card.

C — TO SUPPLY LESS.

C ~ RESULTS IN AN 80A;

C — TO SUPPLY MORE:

C — IS A WASTE FOR SURE;

9.

DYNAMIC CORE ALLOCATION PROGRAM FOR FORTRAN PROGRAMS
 US.IN.C_ OS. MACRO G ETNA IN FOR JHE^LLOCATION MECHANISM.

2. DOUBLE-WORD BOUNDARIES

IfQRE' GÜVSTlMÄflON ALGORITHM

LINKAGE EDITOR MAP_ TOTAL LENGTH
SYSIN/SYSPRINT "^K BYTES
FOR N DO CARDS N*2K BYTES
SUM (6LKSIZE*BUFN0) M
TOTAL REQUIREMENTS (TOTAL LENGTH)-KK+N^K+M

OYNÄ " CSECT
STM 14,12(12(13) SAVE THE GENERAL REGISTERS
 LR 12,15 _ _ JJSE GR 12 AS THE BASE REGISTER

USING OYNA,12 TELL THE ASSEMBLER THE BASE IS
LR 2,1 SAVE REGISTER 1 FUR LATER.

 LA O.SAVESIZE _GR 0 HAS THE SIZE OF SAVE AREA
BAL 1,**4 " IBM CONVENTION FOR GETMAIN (R)
SVC 10 GET MAIN SVC

 USING DYNASAVE,!!
'LR ' " 11,1 USEGR" 11 AS SAVE BASE REGISTER
LR 1,2 RESTORE GR 1 TO ORIGINAL VALUE

 ST 13,SAVEAREA+4 SAVE GR 13 FOR LINKAGE
~LÄ' " 13,SAVEAR£A RESET THE LINKAGE

ST 1,SAVEGR1
♦
♦ INITIALIZATION OF THE PARAMETER LISTS» AND CONSTANTS
*

LA 3,MINSIZE
ST~ ""3,GETSIZE ~
LA 3,FREEAREA

_ST 3,GETAREA
ST' ' 3,ERRLIST ' '~
MVI GETMO0E,X*E0*
MVI GETS'P,X»00»

"XC FREEAREA(16),FREEAREA~ ' ' "
EJECT

♦ " ' ~ ' '" ' ' '
♦ NOW START ALLOCATING THE CORRECT AODRESSESS.
*

L 5,SAVEGR1
L 4,0(0,5) GET ADDRESS OF REAL MAIN PROGRAM
L 4,0(0,A) GR 4 HAS THE ADDRESS OF REAL ONE
ST A,SAVEFAIN
LA * 5,4(0,5) GR 5 POINTS TO THE ARRAY AOORESS
ST" "5,SAVEGRl "" SAVE THE NEW PARMLIST PNTR.

*
♦ WANDER THRU THE PARAMETER LIST TO DETERMINE THE MAX CORE REO'O

>'" "" " " '"' ■ .- _ ..

LA 0,0 ZERO THE WORK REGISTER.
LA 4,0 ZERO THE WORK REGISTER.

Ll)CÄTES EQU * *"■■ "" "- " - ■ '

10.

CLI 0(5)»X>80* I
TE ERROR I

L 4t4(0,5)
I 4,0(0,4)
*RL 4,1
LA 4,1(0,4)
SLL 4,3

"AR 0,4
CLI 4(!)),X»80'
LA 5,8(0,5)

*

'a7<E"" LOCATES "

FORCING DOUBLE WORD ALIGNMENT
♦ ■ " """' • — ••• •■ — ...-.-^ ,. ■ .. H .^wwk •*-— —

ST 0,MAXSIZE
LA l,GETLIST

"15VC " 4
L 2,FREEAREA
L 3,FREESIZE
C 3,HAXSIZE
6L ERROR
L 5,SAVEGRl

LOOP 6QÜ ♦
ST 2,0(0,5)
L 6,4(0,5)
L" ' "6,0(0,6)
SRL 6,1
LA 6,1(0,6)

-~SU* 6,3' " "'
AR 2,6 :'.
CLI 4(5),X»80«

""" * -*— — —T — "LA 5,8(0,5) ~
3NE LOOP
EJECT

V"

*
NOW CALL THE REAL MAIN PROGRAM

C I/SAVEGRl
L 15,SAVEMAIN
DALR 1*4,15

FIRST FREE THE ALLOCATED CORE.

RETRUNS

RETURN TO THE MAIN CALLER NORM

EQU *
L 0,FREESIZE

•HW

L 1,FREEAR£A
SVC 10

 Rj.iyRM EQU ♦
L " "13;SAVEAREA+4
LA • 0,SAVESIZE
LR lill
SVC . 10
LM 14,12,12(13)
LA 15,0

"^R 14 -■"

CHECK FOR ERRONEOUS PARM LIST

GET THE NUMBER OF WORDS REQ'D
THE ACTUAL NUMBER
NUMBER OF WORDS/2
SAFETY FACTOR
PREPARE FOR DOUBLE MORDS
SUM UP THE NUMBER UF DOUBLE WORD
CHECK FOR END OF LIST
STEP FOR THE EXT SET

FOR DOUBLE PRECISI0N_ARRAYS.

FOR THE GET MAIN ROUTINE

CETMAIN SVC CODE
Gk 2 HAS THE ADDRESS OF FREECORE
GR 3 HAS THE AMOUNT FO FREE CORE
TEST IS ALLOCATED EMOUGH

RESET GR 1

CHANGE THE OLD ARRAY ADDRESS
PICK UP THE ADf/RESS OF «BYTES
GR6 - NUMBER OF WORDS IN ARRAY
«WORDS/2
«M)RD«*W0R0S + 1
•WORDS«MULTIPLE OF 8
GR 2 -> NEW FREE AREA
CHECK IF LAST ARGUMENT
GR 5 -> NEW ARRAY LIN LIST

WITH THE NEW PARAMETER LIST

GO TO IT.

FREE THE ALLOCATED CORE.

FREE UP THE SAVE AREA
RETURN THE ALLOCATED ADDRESS
FREE MAIN

NOT ENOUGH CORE IS ALLOCATED FOR THIS JOB

ERROR

*
ERRORI

11.

LA
L
LA
BR

IrERRLIST
15»-V($ERR1)
l4.RETRyNS
15"

INCORRECT SETUP OF THE PARAMETER LIST, MISSING «OF BYTES

EQU
LA
L
BR
EJECT

14,RETURNQ
i5,'V($ERR2)
15

»♦«««««««•«««t**««*««'«*«««****«*«*«««***«*««««**««««*'*!««*******«**«*«*«

OYNASAVE
SAVE BEG..

GETLIST
_GETS1ZE
GETÄREA
GETMOOE
GETSP _
«

FREEAREA
FREESI2E
MINSIZE
MAXSUE
♦
ERRLIST
SAVEAREA
SAVEGR1
SAVEMAIN
SAVEENÜ
SAVESIZE

DYNAMIC SAVE AREA AND CONSTANTS FOR PROGRAM
THE ADORESSESES AND CONSTANTS ARE FILLED IN AT EXECUTION TIME

**
LTORG "' '"" "' '" " ' "
DSECT
EQU
DS
EQU
OS
DS
DS
OS

DS
DS
DS
DS

DS
DS
OS
DS
EQU
EQU
END

* ■_

OF '
*
AL4(MINSIZE)
ÄL4(FREEAREA)
XLl'EO»
XLl'ÜC«

PARAMETER LI ST FOR GE TMAIN

VC MODE
SP 0

OF
AL4COI
IF'O«
IF'O«
l^O«

ALACFREEAREA)
IBP'O«
OIF'O«
IF'O«
* '
SAVEEND-SAVEBEG

ADDRESS OF FREEE CORE AREA
NUMBER OF BYTES ALLOCATED
MINIMUM CORE REQUIREMENT
MAXIMUM CORE REQUIREMENT

12.

SUBROUTINE $ERRl(ICOREJ_ '
'DIMENSION ICOREÜ)
PRINT 10»ICORE(l)t rCORE(2)tICORE(4)
FORMATCOOYNA ERROR: INSUFFICIENT CORE

1
2

• ALLOCATED CORE
fI6,» BYTES.'//)
RETURN
"END

AT •♦Z8,» OF 16,
FOR PROGRAM •//

BYTESi BUT REQUIRED"•

SERR
"$ERR
$ERR
SERR
'SERR
SERR
SERR
SERR

1010
1020
10 30
1040
1050
1060
10 70
1080

SUBROUTINE $ERR2
PRINT 10
FORMATC'ODYNA ERROR: INCCRRECTPARAMETER UST SETUP•)

'STOP " """" '" """" "" ' '
END

SERR2010
$ERR2020
SERR2030
SERR2040
SERR2050

13.

BIBLIOGRAPHY

IBM Syttem/360 Opratlng System, Assembler Language, C28-6514-5.

IBM Syttem/360 Opratlng System, Concepts and Facilities, C28-6535-4.

IBM Sy8tcm/360 Opetaclng System Fortran IV (G and H) Frograaners
Guide, GC28-6817-1.

IBM System/360 Scientific Subroutine Package, (360A-CM-03X) Version III,
Progranmers Manual, H20-0205-3.

IBM System/360 Operating System, Supervisor and Data Management Services,
C28-6646-0.

